Documentation
HelpersLib
.
PReal
.
Subtraction
Search
return to top
source
Imports
Init
HelpersLib.PReal.Basic
HelpersLib.Real.Division
Imported by
PReal
.
sub
PReal
.
sub_toReal
PReal
.
sub_toNNReal
PReal
.
sub_y_add_y
PReal
.
add_y_sub_y
PReal
.
mul_sub'
PReal
.
sub_mul'
PReal
.
div_sub_div_same'
PReal
.
sub_div_aux
PReal
.
sub_div
source
def
PReal
.
sub
(
x
y
:
ℝ>0
)
(
h
:
y
<
x
)
:
ℝ>0
Equations
x
.
sub
y
h
=
⟨
↑
x
-
↑
y
,
⋯
⟩
Instances For
source
@[simp]
theorem
PReal
.
sub_toReal
(
x
y
:
ℝ>0
)
(
gt
:
y
<
x
)
:
↑
(
x
.
sub
y
gt
)
=
↑
x
-
↑
y
source
@[simp]
theorem
PReal
.
sub_toNNReal
(
x
y
:
ℝ>0
)
(
gt
:
y
<
x
)
:
↑
(
x
.
sub
y
gt
)
=
↑
x
-
↑
y
source
@[simp]
theorem
PReal
.
sub_y_add_y
(
x
y
:
ℝ>0
)
(
h
:
y
<
x
)
:
x
.
sub
y
h
+
y
=
x
source
@[simp]
theorem
PReal
.
add_y_sub_y
(
x
y
:
ℝ>0
)
(
h
:
y
<
x
)
:
y
+
x
.
sub
y
h
=
x
source
theorem
PReal
.
mul_sub'
(
x
y
z
:
ℝ>0
)
(
h
:
z
<
y
)
:
x
*
y
.
sub
z
h
=
(
x
*
y
).
sub
(
x
*
z
)
⋯
source
theorem
PReal
.
sub_mul'
(
x
y
z
:
ℝ>0
)
(
h
:
z
<
y
)
:
y
.
sub
z
h
*
x
=
(
y
*
x
).
sub
(
z
*
x
)
⋯
source
theorem
PReal
.
div_sub_div_same'
(
x
y
z
:
ℝ>0
)
(
h
:
y
<
x
)
:
(
x
/
z
).
sub
(
y
/
z
)
⋯
=
x
.
sub
y
h
/
z
source
theorem
PReal
.
sub_div_aux
(
x
y
z
:
ℝ>0
)
(
h
:
y
<
x
*
z
)
:
y
/
z
<
x
source
theorem
PReal
.
sub_div
(
x
y
z
:
ℝ>0
)
(
h
:
y
<
x
*
z
)
:
x
.
sub
(
y
/
z
)
⋯
=
(
x
*
z
).
sub
y
h
/
z