Documentation
HelpersLib
.
Real
.
Division
Search
return to top
source
Imports
Init
Mathlib.Tactic
Mathlib.Tactic.Ring
Mathlib.Data.Real.Basic
Imported by
div_add_div_comm_fact_denum
div_sub_div_comm_fact_denum
min_div_mul_div_simp_comm_fact
mul_div_cancel_den
div_gt_self
mul_eq_iff_eq_div
source
theorem
div_add_div_comm_fact_denum
{
a
b
c
d
:
ℝ
}
(
hd
:
d
≠
0
)
:
a
/
b
+
c
/
(
b
*
d
)
=
(
a
*
d
+
c
)
/
(
b
*
d
)
source
theorem
div_sub_div_comm_fact_denum
{
a
b
c
d
:
ℝ
}
(
hd
:
d
≠
0
)
:
a
/
b
-
c
/
(
b
*
d
)
=
(
a
*
d
-
c
)
/
(
b
*
d
)
source
theorem
min_div_mul_div_simp_comm_fact
{
a
b
c
d
e
:
ℝ
}
(
hc
:
c
≠
0
)
:
-
(
a
/
(
b
*
c
))
*
(
d
*
c
/
e
)
=
-
(
a
*
d
/
(
b
*
e
))
source
theorem
mul_div_cancel_den
{
a
b
c
:
ℝ
}
(
ha
:
a
≠
0
)
:
a
*
(
b
/
(
a
*
c
))
=
b
/
c
source
theorem
div_gt_self
{
a
b
:
ℝ
}
(
ha
:
a
>
0
)
(
hb
:
b
>
0
)
(
hb'
:
b
<
1
)
:
a
/
b
>
a
source
theorem
mul_eq_iff_eq_div
{
a
b
c
:
ℝ
}
(
ha
:
a
≠
0
)
:
a
*
b
=
c
↔
b
=
c
/
a