Documentation

HelpersLib.Real.Division

theorem div_add_div_comm_fact_denum {a b c d : } (hd : d 0) :
a / b + c / (b * d) = (a * d + c) / (b * d)
theorem div_sub_div_comm_fact_denum {a b c d : } (hd : d 0) :
a / b - c / (b * d) = (a * d - c) / (b * d)
theorem min_div_mul_div_simp_comm_fact {a b c d e : } (hc : c 0) :
-(a / (b * c)) * (d * c / e) = -(a * d / (b * e))
theorem mul_div_cancel_den {a b c : } (ha : a 0) :
a * (b / (a * c)) = b / c
theorem div_gt_self {a b : } (ha : a > 0) (hb : b > 0) (hb' : b < 1) :
a / b > a
theorem mul_eq_iff_eq_div {a b c : } (ha : a 0) :
a * b = c b = c / a