Documentation
HelpersLib
.
PReal
.
Basic
Search
return to top
source
Imports
Init
Mathlib.Data.NNReal.Basic
Mathlib.Data.Real.Basic
Mathlib.Algebra.Order.Positive.Field
Mathlib.Algebra.Order.Positive.Ring
Imported by
PReal
«termℝ>0»
add_toReal
PReal
.
toReal
PReal
.
instCoeReal
PReal
.
toNNReal
PReal
.
instCoeNNReal
PReal
.
val_eq_toNNReal
PReal
.
toReal_pos
PReal
.
eq_iff_toReal_eq
PReal
.
toReal_ne_zero
PReal
.
toNNRealReal_eq_toNNReal
PReal
.
toRealPReal_eq_toPReal
PReal
.
toNNReal_ne_zero
PReal
.
zero_lt_toNNReal
PReal
.
add_toReal
PReal
.
add_toNNReal
PReal
.
mul_toReal
PReal
.
mul_toNNReal
PReal
.
div_toReal
PReal
.
div_toNNReal
PReal
.
inv_toReal
PReal
.
inv_toNNReal
PReal
.
sq_toReal
PReal
.
toReal_injective
PReal
.
toReal_eq_toReal_iff
PReal
.
toNNReal_injective
PReal
.
toNNReal_eq_toNNReal_iff
PReal
.
toReal_le_toReal_iff
PReal
.
toNNReal_le_toNNReal_iff
PReal
.
toReal_lt_toReal_iff
PReal
.
toNNReal_lt_toNNReal_iff
PReal
.
toReal_cmp
PReal
.
toNNReal_cmp
PReal
.
add_div''
PReal
.
mk_toReal
PReal
.
mk_toNNReal
PReal
.
toReal_one_eq_Real_one
source
@[reducible, inline]
abbrev
PReal
:
Type
Equations
ℝ>0
=
{
r
:
ℝ
//
0
<
r
}
Instances For
source
def
«termℝ>0»
:
Lean.ParserDescr
Equations
«termℝ>0»
=
Lean.ParserDescr.node
`«termℝ>0»
1024
(
Lean.ParserDescr.symbol
"ℝ>0"
)
Instances For
source
@[simp]
theorem
add_toReal
(
x
y
:
ℝ>0
)
:
↑(
x
+
y
)
=
↑
x
+
↑
y
source
def
PReal
.
toReal
:
ℝ>0
→
ℝ
Equations
PReal.toReal
=
Subtype.val
Instances For
source
instance
PReal
.
instCoeReal
:
Coe
ℝ>0
ℝ
Equations
PReal.instCoeReal
=
{
coe
:=
PReal.toReal
}
source
def
PReal
.
toNNReal
:
ℝ>0
→
NNReal
Equations
↑
x
=
⟨
↑
x
,
⋯
⟩
Instances For
source
instance
PReal
.
instCoeNNReal
:
Coe
ℝ>0
NNReal
Equations
PReal.instCoeNNReal
=
{
coe
:=
PReal.toNNReal
}
source
@[simp]
theorem
PReal
.
val_eq_toNNReal
(
n
:
ℝ>0
)
:
↑
n
=
↑
n
source
theorem
PReal
.
toReal_pos
(
x
:
ℝ>0
)
:
0
<
↑
x
source
theorem
PReal
.
eq_iff_toReal_eq
(
x
y
:
ℝ>0
)
:
x
=
y
↔
↑
x
=
↑
y
source
theorem
PReal
.
toReal_ne_zero
(
x
:
ℝ>0
)
:
↑
x
≠
0
source
@[simp]
theorem
PReal
.
toNNRealReal_eq_toNNReal
(
x
:
ℝ>0
)
:
↑
↑
x
=
↑
x
source
@[simp]
theorem
PReal
.
toRealPReal_eq_toPReal
(
x
:
ℝ>0
)
:
⟨
↑
x
,
⋯
⟩
=
x
source
theorem
PReal
.
toNNReal_ne_zero
(
x
:
ℝ>0
)
:
↑
x
≠
0
source
theorem
PReal
.
zero_lt_toNNReal
(
x
:
ℝ>0
)
:
0
<
↑
x
source
@[simp]
theorem
PReal
.
add_toReal
(
x
y
:
ℝ>0
)
:
↑(
x
+
y
)
=
↑
x
+
↑
y
source
@[simp]
theorem
PReal
.
add_toNNReal
(
x
y
:
ℝ>0
)
:
↑(
x
+
y
)
=
↑
x
+
↑
y
source
@[simp]
theorem
PReal
.
mul_toReal
(
x
y
:
ℝ>0
)
:
↑(
x
*
y
)
=
↑
x
*
↑
y
source
@[simp]
theorem
PReal
.
mul_toNNReal
(
x
y
:
ℝ>0
)
:
↑(
x
*
y
)
=
↑
x
*
↑
y
source
@[simp]
theorem
PReal
.
div_toReal
(
x
y
:
ℝ>0
)
:
↑(
x
/
y
)
=
↑
x
/
↑
y
source
@[simp]
theorem
PReal
.
div_toNNReal
(
x
y
:
ℝ>0
)
:
↑(
x
/
y
)
=
↑
x
/
↑
y
source
@[simp]
theorem
PReal
.
inv_toReal
(
x
:
ℝ>0
)
:
↑
x
⁻¹
=
(↑
x
)
⁻¹
source
@[simp]
theorem
PReal
.
inv_toNNReal
(
x
:
ℝ>0
)
:
↑
x
⁻¹
=
(↑
x
)
⁻¹
source
theorem
PReal
.
sq_toReal
(
x
:
ℝ>0
)
:
↑(
x
^
2
)
=
↑
x
^
2
source
theorem
PReal
.
toReal_injective
:
Function.Injective
toReal
source
@[simp]
theorem
PReal
.
toReal_eq_toReal_iff
(
x
y
:
ℝ>0
)
:
x
=
y
↔
↑
x
=
↑
y
source
theorem
PReal
.
toNNReal_injective
:
Function.Injective
toNNReal
source
theorem
PReal
.
toNNReal_eq_toNNReal_iff
(
x
y
:
ℝ>0
)
:
↑
x
=
↑
y
↔
x
=
y
source
@[simp]
theorem
PReal
.
toReal_le_toReal_iff
(
x
y
:
ℝ>0
)
:
x
≤
y
↔
↑
x
≤
↑
y
source
theorem
PReal
.
toNNReal_le_toNNReal_iff
(
x
y
:
ℝ>0
)
:
x
≤
y
↔
↑
x
≤
↑
y
source
@[simp]
theorem
PReal
.
toReal_lt_toReal_iff
(
x
y
:
ℝ>0
)
:
x
<
y
↔
↑
x
<
↑
y
source
theorem
PReal
.
toNNReal_lt_toNNReal_iff
(
x
y
:
ℝ>0
)
:
↑
x
<
↑
y
↔
x
<
y
source
@[simp]
theorem
PReal
.
toReal_cmp
(
x
y
:
ℝ>0
)
:
cmp
x
y
=
cmp
↑
x
↑
y
source
theorem
PReal
.
toNNReal_cmp
(
x
y
:
ℝ>0
)
:
cmp
↑
x
↑
y
=
cmp
x
y
source
theorem
PReal
.
add_div''
{
α
:
Type
}
[
DivInvMonoid
α
]
[
Add
α
]
[
RightDistribClass
α
]
(
a
b
c
:
α
)
:
(
a
+
b
)
/
c
=
a
/
c
+
b
/
c
source
@[simp]
theorem
PReal
.
mk_toReal
(
x
:
ℝ
)
(
h
:
0
<
x
)
:
↑
⟨
x
,
h
⟩
=
x
source
@[simp]
theorem
PReal
.
mk_toNNReal
(
x
:
ℝ
)
(
h
:
0
<
x
)
:
↑
⟨
x
,
h
⟩
=
x
.
toNNReal
source
theorem
PReal
.
toReal_one_eq_Real_one
:
↑
1
=
1