Documentation

HelpersLib.PReal.Basic

@[reducible, inline]
abbrev PReal :
Equations
Instances For
    @[simp]
    theorem add_toReal (x y : ℝ>0) :
    ↑(x + y) = x + y
    Equations
    Instances For
      Equations
      • x = x,
      Instances For
        @[simp]
        theorem PReal.val_eq_toNNReal (n : ℝ>0) :
        n = n
        theorem PReal.toReal_pos (x : ℝ>0) :
        0 < x
        theorem PReal.eq_iff_toReal_eq (x y : ℝ>0) :
        x = y x = y
        theorem PReal.toReal_ne_zero (x : ℝ>0) :
        x 0
        @[simp]
        theorem PReal.toNNRealReal_eq_toNNReal (x : ℝ>0) :
        x = x
        @[simp]
        theorem PReal.toRealPReal_eq_toPReal (x : ℝ>0) :
        x, = x
        theorem PReal.toNNReal_ne_zero (x : ℝ>0) :
        x 0
        theorem PReal.zero_lt_toNNReal (x : ℝ>0) :
        0 < x
        @[simp]
        theorem PReal.add_toReal (x y : ℝ>0) :
        ↑(x + y) = x + y
        @[simp]
        theorem PReal.add_toNNReal (x y : ℝ>0) :
        ↑(x + y) = x + y
        @[simp]
        theorem PReal.mul_toReal (x y : ℝ>0) :
        ↑(x * y) = x * y
        @[simp]
        theorem PReal.mul_toNNReal (x y : ℝ>0) :
        ↑(x * y) = x * y
        @[simp]
        theorem PReal.div_toReal (x y : ℝ>0) :
        ↑(x / y) = x / y
        @[simp]
        theorem PReal.div_toNNReal (x y : ℝ>0) :
        ↑(x / y) = x / y
        @[simp]
        theorem PReal.inv_toReal (x : ℝ>0) :
        x⁻¹ = (↑x)⁻¹
        @[simp]
        theorem PReal.inv_toNNReal (x : ℝ>0) :
        x⁻¹ = (↑x)⁻¹
        theorem PReal.sq_toReal (x : ℝ>0) :
        ↑(x ^ 2) = x ^ 2
        @[simp]
        theorem PReal.toReal_eq_toReal_iff (x y : ℝ>0) :
        x = y x = y
        theorem PReal.toNNReal_eq_toNNReal_iff (x y : ℝ>0) :
        x = y x = y
        @[simp]
        theorem PReal.toReal_le_toReal_iff (x y : ℝ>0) :
        x y x y
        theorem PReal.toNNReal_le_toNNReal_iff (x y : ℝ>0) :
        x y x y
        @[simp]
        theorem PReal.toReal_lt_toReal_iff (x y : ℝ>0) :
        x < y x < y
        theorem PReal.toNNReal_lt_toNNReal_iff (x y : ℝ>0) :
        x < y x < y
        @[simp]
        theorem PReal.toReal_cmp (x y : ℝ>0) :
        cmp x y = cmp x y
        theorem PReal.toNNReal_cmp (x y : ℝ>0) :
        cmp x y = cmp x y
        theorem PReal.add_div'' {α : Type} [DivInvMonoid α] [Add α] [RightDistribClass α] (a b c : α) :
        (a + b) / c = a / c + b / c
        @[simp]
        theorem PReal.mk_toReal (x : ) (h : 0 < x) :
        x, h = x
        @[simp]
        theorem PReal.mk_toNNReal (x : ) (h : 0 < x) :
        x, h = x.toNNReal