Documentation

HelpersLib.PReal.Order

@[simp]
theorem PReal.lt_add_right (x y : ℝ>0) :
x < x + y
@[simp]
theorem PReal.lt_add_left (x y : ℝ>0) :
x < y + x
@[simp]
theorem PReal.lt_add_iff_lt_cancel (x y z : ℝ>0) :
x + z < x + y z < y
theorem PReal.gt_add_right (x y : ℝ>0) :
x + y > x
theorem PReal.div_lt_add_denum (x y z : ℝ>0) :
x / (y + z) < x / y
theorem PReal.lt_iff_exists_add {x y : ℝ>0} (h : x < y) :
∃ (z : ℝ>0), y = x + z
theorem PReal.lt_iff_exists_add' {x y : ℝ>0} :
x < y ∃ (z : ℝ>0), y = x + z
theorem PReal.sub_sub' (x y z : ℝ>0) (h : y + z < x) :
x.sub (y + z) h = (x.sub y ).sub z
theorem PReal.lt_imp_sub_lt (x y z : ℝ>0) (h : z < x) (h' : x < y) :
x.sub z h < y
theorem PReal.x_sub_y_lt_x_sub_z_iff (x y z : ℝ>0) (h : z < x) (h' : y < x) :
x.sub y h' < x.sub z h z < y
@[simp]
theorem PReal.add_sub (x y : ℝ>0) :
(x + y).sub y = x
theorem PReal.sub_lt_iff (x y z : ℝ>0) (h : y < x) :
x.sub y h < z x < z + y
theorem PReal.add_lt_iff (x y z : ℝ>0) (h : x < z) :
x + y < z y < z.sub x h
theorem PReal.sub_sub'' (x y z : ℝ>0) (h1 : z < y) (h2 : y.sub z h1 < x) :
x.sub (y.sub z h1) h2 = (x + z).sub y
@[simp]
theorem PReal.sub_of_add (x y : ℝ>0) :
(x + y).sub y = x
theorem PReal.div_lt_div_same_num (a b c : ℝ>0) (hbc : b > c) :
a / b < a / c
theorem PReal.div_lt_div_same_denum (a b c : ℝ>0) (hab : a < b) :
a / c < b / c
theorem PReal.div_lt_div (a b c d : ℝ>0) (h_lt : a * d < b * c) :
a / c < b / d
theorem PReal.div_lt_div_denum_right {d e : ℝ>0} (a b c : ℝ>0) :
a / (b * c) < d / (e * c) a / b < d / e
theorem PReal.add_pos_of_Real (a b : ℝ>0) :
a + b > 0
theorem PReal.mul_pos_of_Real (a b : ℝ>0) :
a * b > 0
theorem PReal.neg_sub_ne_zero_pos {a b : } (h : a < b) :
(a - b) ^ 2 > 0