Documentation
HelpersLib
.
PReal
.
Order
Search
return to top
source
Imports
Init
HelpersLib.PReal.Basic
HelpersLib.PReal.Division
HelpersLib.PReal.Subtraction
Imported by
PReal
.
lt_add_right
PReal
.
lt_add_left
PReal
.
lt_add_iff_lt_cancel
PReal
.
lt_self_iff_mul_fact_lt_one
PReal
.
gt_add_right
PReal
.
div_lt_add_denum
PReal
.
lt_iff_exists_add
PReal
.
lt_iff_exists_add'
PReal
.
sub_sub'
PReal
.
lt_imp_sub_lt
PReal
.
x_sub_y_lt_x_sub_z_iff
PReal
.
add_sub
PReal
.
sub_lt_iff
PReal
.
add_lt_iff
PReal
.
sub_sub''
PReal
.
sub_of_add
PReal
.
div_lt_div_same_num
PReal
.
div_lt_div_same_denum
PReal
.
div_lt_div
PReal
.
div_lt_div_denum_right
PReal
.
add_pos_of_Real
PReal
.
mul_pos_of_Real
PReal
.
neg_sub_ne_zero_pos
source
@[simp]
theorem
PReal
.
lt_add_right
(
x
y
:
ℝ>0
)
:
x
<
x
+
y
source
@[simp]
theorem
PReal
.
lt_add_left
(
x
y
:
ℝ>0
)
:
x
<
y
+
x
source
@[simp]
theorem
PReal
.
lt_add_iff_lt_cancel
(
x
y
z
:
ℝ>0
)
:
x
+
z
<
x
+
y
↔
z
<
y
source
theorem
PReal
.
lt_self_iff_mul_fact_lt_one
(
x
y
:
ℝ>0
)
:
x
*
y
<
x
↔
y
<
1
source
theorem
PReal
.
gt_add_right
(
x
y
:
ℝ>0
)
:
x
+
y
>
x
source
theorem
PReal
.
div_lt_add_denum
(
x
y
z
:
ℝ>0
)
:
x
/
(
y
+
z
)
<
x
/
y
source
theorem
PReal
.
lt_iff_exists_add
{
x
y
:
ℝ>0
}
(
h
:
x
<
y
)
:
∃ (
z
:
ℝ>0
),
y
=
x
+
z
source
theorem
PReal
.
lt_iff_exists_add'
{
x
y
:
ℝ>0
}
:
x
<
y
↔
∃ (
z
:
ℝ>0
),
y
=
x
+
z
source
theorem
PReal
.
sub_sub'
(
x
y
z
:
ℝ>0
)
(
h
:
y
+
z
<
x
)
:
x
.
sub
(
y
+
z
)
h
=
(
x
.
sub
y
⋯
)
.
sub
z
⋯
source
theorem
PReal
.
lt_imp_sub_lt
(
x
y
z
:
ℝ>0
)
(
h
:
z
<
x
)
(
h'
:
x
<
y
)
:
x
.
sub
z
h
<
y
source
theorem
PReal
.
x_sub_y_lt_x_sub_z_iff
(
x
y
z
:
ℝ>0
)
(
h
:
z
<
x
)
(
h'
:
y
<
x
)
:
x
.
sub
y
h'
<
x
.
sub
z
h
↔
z
<
y
source
@[simp]
theorem
PReal
.
add_sub
(
x
y
:
ℝ>0
)
:
(
x
+
y
).
sub
y
⋯
=
x
source
theorem
PReal
.
sub_lt_iff
(
x
y
z
:
ℝ>0
)
(
h
:
y
<
x
)
:
x
.
sub
y
h
<
z
↔
x
<
z
+
y
source
theorem
PReal
.
add_lt_iff
(
x
y
z
:
ℝ>0
)
(
h
:
x
<
z
)
:
x
+
y
<
z
↔
y
<
z
.
sub
x
h
source
theorem
PReal
.
sub_sub''
(
x
y
z
:
ℝ>0
)
(
h1
:
z
<
y
)
(
h2
:
y
.
sub
z
h1
<
x
)
:
x
.
sub
(
y
.
sub
z
h1
)
h2
=
(
x
+
z
).
sub
y
⋯
source
@[simp]
theorem
PReal
.
sub_of_add
(
x
y
:
ℝ>0
)
:
(
x
+
y
).
sub
y
⋯
=
x
source
theorem
PReal
.
div_lt_div_same_num
(
a
b
c
:
ℝ>0
)
(
hbc
:
b
>
c
)
:
a
/
b
<
a
/
c
source
theorem
PReal
.
div_lt_div_same_denum
(
a
b
c
:
ℝ>0
)
(
hab
:
a
<
b
)
:
a
/
c
<
b
/
c
source
theorem
PReal
.
div_lt_div
(
a
b
c
d
:
ℝ>0
)
(
h_lt
:
a
*
d
<
b
*
c
)
:
a
/
c
<
b
/
d
source
theorem
PReal
.
div_lt_div_denum_right
{
d
e
:
ℝ>0
}
(
a
b
c
:
ℝ>0
)
:
a
/
(
b
*
c
)
<
d
/
(
e
*
c
)
↔
a
/
b
<
d
/
e
source
theorem
PReal
.
add_pos_of_Real
(
a
b
:
ℝ>0
)
:
↑
a
+
↑
b
>
0
source
theorem
PReal
.
mul_pos_of_Real
(
a
b
:
ℝ>0
)
:
↑
a
*
↑
b
>
0
source
theorem
PReal
.
neg_sub_ne_zero_pos
{
a
b
:
ℝ
}
(
h
:
a
<
b
)
:
(
a
-
b
)
^
2
>
0