theorem
Finsupp.sum_zero'
{α β γ : Type}
[Zero β]
[AddCommMonoid γ]
[DecidableEq α]
(f : α →₀ β)
(g : α → β → γ)
(x : α)
(h : g x (f x) = 0)
:
theorem
Finsupp.update_diff
{α β : Type}
[DecidableEq α]
[Zero β]
(f : α →₀ β)
(a' : α)
(b : β)
(a : α)
(hdif : a ≠ a')
:
@[simp]
theorem
Finsupp.up_diff
{α β γ : Type}
[DecidableEq α]
[Zero γ]
(f : α →₀ β →₀ γ)
(a' : α)
(b : β)
(c : γ)
(a : α)
(hdif : a ≠ a')
:
@[simp]
theorem
Finsupp.up_diff2
{α β γ : Type}
[DecidableEq α]
[DecidableEq β]
[Zero γ]
(f : α →₀ β →₀ γ)
(a' : α)
(b' : β)
(c : γ)
(a : α)
(b : β)
(hdif : b ≠ b')
:
@[simp]
theorem
Finsupp.up_self
{α β γ : Type}
[DecidableEq α]
[DecidableEq β]
[Zero γ]
(f : α →₀ β →₀ γ)
(a' : α)
(b' : β)
(c : γ)
:
Equations
- f.uncurried_swap = { support := Finset.map Prod.swap_emb f.support, toFun := fun (x : β × α) => match x with | (b, a) => f (Prod.swap_emb (b, a)), mem_support_toFun := ⋯ }
Instances For
theorem
Finsupp.uncurried_swap_def
{α β M : Type}
[e : AddCommMonoid M]
(f : α × β →₀ M)
(x : α × β)
:
theorem
Finsupp.uncurried_swap_def'
{α β M : Type}
[e : AddCommMonoid M]
(f : α × β →₀ M)
(x : β × α)
:
Equations
Instances For
theorem
Finsupp.curried_swap_def
{α β M : Type}
[e : AddCommMonoid M]
(f : α →₀ β →₀ M)
(a : α)
(b : β)
:
theorem
Finsupp.up_swap
{α β M : Type}
[DecidableEq α]
[DecidableEq β]
[AddCommMonoid M]
(f : α →₀ β →₀ M)
(a' : α)
(b' : β)
(m : M)
: