Documentation

HelpersLib.Finsupp2

theorem Finsupp.sum_zero' {α β γ : Type} [Zero β] [AddCommMonoid γ] [DecidableEq α] (f : α →₀ β) (g : αβγ) (x : α) (h : g x (f x) = 0) :
f.sum g = (erase x f).sum g
theorem Finsupp.update_diff {α β : Type} [DecidableEq α] [Zero β] (f : α →₀ β) (a' : α) (b : β) (a : α) (hdif : a a') :
(f.update a' b) a = f a
noncomputable def Finsupp.up {α β γ : Type} [Zero γ] (f : α →₀ β →₀ γ) (a : α) (b : β) (c : γ) :
α →₀ β →₀ γ
Equations
Instances For
    theorem Finsupp.up_eq {α β γ : Type} [AddZeroClass γ] (f : α →₀ β →₀ γ) (a : α) (b : β) (c : γ) :
    f.up a b c = erase a f + single a ((f a).update b c)
    theorem Finsupp.up_apply {α β γ : Type} [Zero γ] [DecidableEq α] [DecidableEq β] (f : α →₀ β →₀ γ) (a' : α) (b' : β) (c : γ) (a : α) (b : β) :
    ((f.up a' b' c) a) b = if a = a' b = b' then c else (f a) b
    @[simp]
    theorem Finsupp.up_diff {α β γ : Type} [DecidableEq α] [Zero γ] (f : α →₀ β →₀ γ) (a' : α) (b : β) (c : γ) (a : α) (hdif : a a') :
    (f.up a' b c) a = f a
    @[simp]
    theorem Finsupp.up_diff2 {α β γ : Type} [DecidableEq α] [DecidableEq β] [Zero γ] (f : α →₀ β →₀ γ) (a' : α) (b' : β) (c : γ) (a : α) (b : β) (hdif : b b') :
    ((f.up a' b' c) a) b = (f a) b
    @[simp]
    theorem Finsupp.up_self {α β γ : Type} [DecidableEq α] [DecidableEq β] [Zero γ] (f : α →₀ β →₀ γ) (a' : α) (b' : β) (c : γ) :
    ((f.up a' b' c) a') b' = c
    def Finsupp.uncurried_swap {α β M : Type} [e : AddCommMonoid M] (f : α × β →₀ M) :
    β × α →₀ M
    Equations
    Instances For
      theorem Finsupp.uncurried_swap_def {α β M : Type} [e : AddCommMonoid M] (f : α × β →₀ M) (x : α × β) :
      theorem Finsupp.uncurried_swap_def' {α β M : Type} [e : AddCommMonoid M] (f : α × β →₀ M) (x : β × α) :
      noncomputable def Finsupp.curried_swap {α β M : Type} [AddCommMonoid M] (f : α →₀ β →₀ M) :
      β →₀ α →₀ M
      Equations
      Instances For
        theorem Finsupp.uncurry_curry2 {α β M : Type} [e : AddCommMonoid M] (f : α →₀ β →₀ M) :
        theorem Finsupp.uncurry_apply {α β M : Type} [e : AddCommMonoid M] (f : α →₀ β →₀ M) (a : α) (b : β) :
        f.uncurry (a, b) = (f a) b
        theorem Finsupp.curried_swap_def {α β M : Type} [e : AddCommMonoid M] (f : α →₀ β →₀ M) (a : α) (b : β) :
        (f.curried_swap b) a = (f a) b
        theorem Finsupp.up_swap {α β M : Type} [DecidableEq α] [DecidableEq β] [AddCommMonoid M] (f : α →₀ β →₀ M) (a' : α) (b' : β) (m : M) :
        (f.up a' b' m).curried_swap = f.curried_swap.up b' a' m