Documentation

HelpersLib.Prod

theorem Prod.neq_zero_iff {α β : Type} [Zero α] [Zero β] (p : α × β) :
p 0 p.1 0 p.2 0
@[simp]
theorem Prod.swap_eq_zero {α β : Type} [Zero α] [Zero β] (p : α × β) :
p.swap = 0 p = 0
@[simp]
theorem Prod.swap_ne_zero {α β : Type} [Zero α] [Zero β] (p : α × β) :
p.swap 0 p 0
def Prod.swap_emb {α β : Type} :
α × β β × α
Equations
Instances For
    theorem Prod.fst_snd {α β : Type} (p : α × β) :
    p = (p.1, p.2)
    theorem Prod.neq_iff_fst_neq_or_snd_eq {α β : Type} (p q : α × β) :
    p q p.1 q.1 p.2 q.2