Documentation
HelpersLib
.
Prod
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Prod
Mathlib.Logic.Embedding.Basic
Imported by
Prod
.
neq_zero_iff
Prod
.
swap_eq_zero
Prod
.
swap_ne_zero
Prod
.
swap_emb
Prod
.
swap_emb_coe
Prod
.
fst_snd
Prod
.
neq_iff_fst_neq_or_snd_eq
source
theorem
Prod
.
neq_zero_iff
{
α
β
:
Type
}
[
Zero
α
]
[
Zero
β
]
(
p
:
α
×
β
)
:
p
≠
0
↔
p
.1
≠
0
∨
p
.2
≠
0
source
@[simp]
theorem
Prod
.
swap_eq_zero
{
α
β
:
Type
}
[
Zero
α
]
[
Zero
β
]
(
p
:
α
×
β
)
:
p
.
swap
=
0
↔
p
=
0
source
@[simp]
theorem
Prod
.
swap_ne_zero
{
α
β
:
Type
}
[
Zero
α
]
[
Zero
β
]
(
p
:
α
×
β
)
:
p
.
swap
≠
0
↔
p
≠
0
source
def
Prod
.
swap_emb
{
α
β
:
Type
}
:
α
×
β
↪
β
×
α
Equations
Prod.swap_emb
=
{
toFun
:=
Prod.swap
,
inj'
:=
⋯
}
Instances For
source
theorem
Prod
.
swap_emb_coe
{
α
β
:
Type
}
:
⇑
swap_emb
=
swap
source
theorem
Prod
.
fst_snd
{
α
β
:
Type
}
(
p
:
α
×
β
)
:
p
=
(
p
.1
,
p
.2
)
source
theorem
Prod
.
neq_iff_fst_neq_or_snd_eq
{
α
β
:
Type
}
(
p
q
:
α
×
β
)
:
p
≠
q
↔
p
.1
≠
q
.1
∨
p
.2
≠
q
.2