Documentation
AMMLib
.
State
.
AMMsNN
Search
return to top
source
Imports
Init
AMMLib.State.AMMs
Imported by
AMMs
.
r0₀
AMMs
.
r1₀
AMMs
.
r0_same₀
AMMs
.
r1_same₀
AMMs
.
r0_toNNReal
AMMs
.
r1_toNNReal
AMMs
.
r0_reorder₀
AMMs
.
r1_reorder₀
AMMs
.
r0_of_initialize₀
AMMs
.
r1_of_initialize₀
AMMs
.
r0_of_initialize_diffpair₀
AMMs
.
r1_of_initialize_diffpair₀
AMMs
.
r0_of_add_r0₀
AMMs
.
r0_of_add_r0_diff₀
AMMs
.
r0_of_add_r1₀
AMMs
.
r0_of_add_r1_diff₀
AMMs
.
r1_of_add_r1₀
AMMs
.
r1_of_add_r1_diff₀
AMMs
.
r1_of_add_r0₀
AMMs
.
r1_of_add_r0_swapped₀
AMMs
.
r1_of_add_r1_swapped₀
AMMs
.
r0_of_add_r1_swapped₀
AMMs
.
r0_of_add_r0_swapped₀
AMMs
.
r1_of_add_r0_diff₀
AMMs
.
r0_of_sub_r0₀
AMMs
.
r0_of_sub_r1₀
AMMs
.
r1_of_sub_r1₀
AMMs
.
r1_of_sub_r0₀
AMMs
.
r0_of_sub_r0_diff₀
AMMs
.
r0_of_sub_r1_diff₀
AMMs
.
r1_of_sub_r1_diff₀
AMMs
.
r1_of_sub_r0_diff₀
AMMs
.
r0_of_sub_r0_swapped₀
AMMs
.
r0_of_sub_r1_swapped₀
AMMs
.
r1_of_sub_r1_swapped₀
AMMs
.
r1_of_sub_r0_swapped₀
AMMs
.
eq_iff
source
def
AMMs
.
r0₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
:
NNReal
Equations
amms
.
r0₀
t0
t1
=
(
amms
.
res
t0
)
t1
Instances For
source
def
AMMs
.
r1₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
:
NNReal
Equations
amms
.
r1₀
t0
t1
=
(
amms
.
res
t1
)
t0
Instances For
source
@[simp]
theorem
AMMs
.
r0_same₀
(
amms
:
AMMs
)
(
t
:
T
)
:
amms
.
r0₀
t
t
=
0
source
@[simp]
theorem
AMMs
.
r1_same₀
(
amms
:
AMMs
)
(
t
:
T
)
:
amms
.
r1₀
t
t
=
0
source
@[simp]
theorem
AMMs
.
r0_toNNReal
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
hinit
:
amms
.
init
t0
t1
)
:
↑
(
amms
.
r0
t0
t1
hinit
)
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_toNNReal
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
hinit
:
amms
.
init
t0
t1
)
:
↑
(
amms
.
r1
t0
t1
hinit
)
=
amms
.
r1₀
t0
t1
source
theorem
AMMs
.
r0_reorder₀
(
amms
:
AMMs
)
(
t1
t0
:
T
)
:
amms
.
r0₀
t1
t0
=
amms
.
r1₀
t0
t1
source
theorem
AMMs
.
r1_reorder₀
(
amms
:
AMMs
)
(
t1
t0
:
T
)
:
amms
.
r1₀
t1
t0
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_initialize₀
(
amms
:
AMMs
)
{
t0
t1
:
T
}
(
hdif
:
t0
≠
t1
)
(
r0
r1
:
ℝ>0
)
:
(
amms
.
initialize
hdif
r0
r1
)
.
r0₀
t0
t1
=
↑
r0
source
@[simp]
theorem
AMMs
.
r1_of_initialize₀
(
amms
:
AMMs
)
{
t0
t1
:
T
}
(
hdif
:
t0
≠
t1
)
(
r0
r1
:
ℝ>0
)
:
(
amms
.
initialize
hdif
r0
r1
)
.
r1₀
t0
t1
=
↑
r1
source
@[simp]
theorem
AMMs
.
r0_of_initialize_diffpair₀
(
amms
:
AMMs
)
{
t0
t1
:
T
}
(
hdif
:
t0
≠
t1
)
(
r0
r1
:
ℝ>0
)
(
t0'
t1'
:
T
)
(
difp
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
initialize
hdif
r0
r1
)
.
r0₀
t0'
t1'
=
amms
.
r0₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r1_of_initialize_diffpair₀
(
amms
:
AMMs
)
{
t0
t1
:
T
}
(
hdif
:
t0
≠
t1
)
(
r0
r1
:
ℝ>0
)
(
t0'
t1'
:
T
)
(
difp
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
initialize
hdif
r0
r1
)
.
r1₀
t0'
t1'
=
amms
.
r1₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r0_of_add_r0₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
x
:
ℝ>0
)
(
h
:
amms
.
init
t0
t1
)
:
(
amms
.
add_r0
t0
t1
h
x
)
.
r0₀
t0
t1
=
↑
x
+
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_add_r0_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
x
:
ℝ>0
)
(
h
:
amms
.
init
t0
t1
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
add_r0
t0
t1
h
x
)
.
r0₀
t0'
t1'
=
amms
.
r0₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r0_of_add_r1₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r1
t0
t1
h
x
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_add_r1_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
x
:
ℝ>0
)
(
h
:
amms
.
init
t0
t1
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
add_r1
t0
t1
h
x
)
.
r0₀
t0'
t1'
=
amms
.
r0₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r1_of_add_r1₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r1
t0
t1
h
x
)
.
r1₀
t0
t1
=
↑
x
+
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_add_r1_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
x
:
ℝ>0
)
(
h
:
amms
.
init
t0
t1
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
add_r1
t0
t1
h
x
)
.
r1₀
t0'
t1'
=
amms
.
r1₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r1_of_add_r0₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r0
t0
t1
h
x
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_add_r0_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r0
t1
t0
⋯
x
)
.
r1₀
t0
t1
=
↑
x
+
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_add_r1_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r1
t1
t0
⋯
x
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_add_r1_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r1
t1
t0
⋯
x
)
.
r0₀
t0
t1
=
↑
x
+
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_add_r0_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
:
(
amms
.
add_r0
t1
t0
⋯
x
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_add_r0_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
x
:
ℝ>0
)
(
h
:
amms
.
init
t0
t1
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
add_r0
t0
t1
h
x
)
.
r1₀
t0'
t1'
=
amms
.
r1₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r0_of_sub_r0₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t0
t1
h
)
:
(
amms
.
sub_r0
t0
t1
h
x
h'
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
-
↑
x
source
@[simp]
theorem
AMMs
.
r0_of_sub_r1₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t0
t1
h
)
:
(
amms
.
sub_r1
t0
t1
h
x
h'
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_sub_r1₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t0
t1
h
)
:
(
amms
.
sub_r1
t0
t1
h
x
h'
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
-
↑
x
source
@[simp]
theorem
AMMs
.
r1_of_sub_r0₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t0
t1
h
)
:
(
amms
.
sub_r0
t0
t1
h
x
h'
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_sub_r0_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t0
t1
h
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
sub_r0
t0
t1
h
x
h'
)
.
r0₀
t0'
t1'
=
amms
.
r0₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r0_of_sub_r1_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t0
t1
h
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
sub_r1
t0
t1
h
x
h'
)
.
r0₀
t0'
t1'
=
amms
.
r0₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r1_of_sub_r1_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t0
t1
h
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
sub_r1
t0
t1
h
x
h'
)
.
r1₀
t0'
t1'
=
amms
.
r1₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r1_of_sub_r0_diff₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t0
t1
h
)
(
t0'
t1'
:
T
)
(
hdiff
:
diffmint
t0
t1
t0'
t1'
)
:
(
amms
.
sub_r0
t0
t1
h
x
h'
)
.
r1₀
t0'
t1'
=
amms
.
r1₀
t0'
t1'
source
@[simp]
theorem
AMMs
.
r0_of_sub_r0_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t1
t0
⋯
)
:
(
amms
.
sub_r0
t1
t0
⋯
x
h'
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
source
@[simp]
theorem
AMMs
.
r0_of_sub_r1_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t1
t0
⋯
)
:
(
amms
.
sub_r1
t1
t0
⋯
x
h'
)
.
r0₀
t0
t1
=
amms
.
r0₀
t0
t1
-
↑
x
source
@[simp]
theorem
AMMs
.
r1_of_sub_r1_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r1
t1
t0
⋯
)
:
(
amms
.
sub_r1
t1
t0
⋯
x
h'
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
source
@[simp]
theorem
AMMs
.
r1_of_sub_r0_swapped₀
(
amms
:
AMMs
)
(
t0
t1
:
T
)
(
h
:
amms
.
init
t0
t1
)
(
x
:
ℝ>0
)
(
h'
:
x
<
amms
.
r0
t1
t0
⋯
)
:
(
amms
.
sub_r0
t1
t0
⋯
x
h'
)
.
r1₀
t0
t1
=
amms
.
r1₀
t0
t1
-
↑
x
source
theorem
AMMs
.
eq_iff
(
amms
amms'
:
AMMs
)
:
amms
=
amms'
↔
∀ (
t0
t1
:
T
),
amms
.
r0₀
t0
t1
=
amms'
.
r0₀
t0
t1