Documentation

HelpersLib.Real.Order

theorem div_neg_iff_neg (a b : ) (h : 0 < b) :
a / b < 0 a < 0
theorem mul_lt_mul_iff_div_lt_div {a b c d : } (ha : a > 0) (hc : c > 0) :
a * b < c * d b / c < d / a
theorem mul_lt_iff_lt_div (a b c : ) (hb : 0 < b) :
a * b < c a < c / b
theorem sqrt_mul_lt_sqrt {a b c : } (ha : 0 < a) (hb : 0 < b) :
a * b < c a * b ^ 2 < c
theorem sqrt_lt_sqrt_mul {a b c : } (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
a < c * b a < c * b ^ 2