Documentation
HelpersLib
.
Real
.
Order
Search
return to top
source
Imports
Init
Mathlib.Data.Real.Basic
Mathlib.Data.Real.Sqrt
Imported by
div_neg_iff_neg
mul_lt_mul_iff_div_lt_div
mul_lt_iff_lt_div
sqrt_mul_lt_sqrt
sqrt_lt_sqrt_mul
source
theorem
div_neg_iff_neg
(
a
b
:
ℝ
)
(
h
:
0
<
b
)
:
a
/
b
<
0
↔
a
<
0
source
theorem
mul_lt_mul_iff_div_lt_div
{
a
b
c
d
:
ℝ
}
(
ha
:
a
>
0
)
(
hc
:
c
>
0
)
:
a
*
b
<
c
*
d
↔
b
/
c
<
d
/
a
source
theorem
mul_lt_iff_lt_div
(
a
b
c
:
ℝ
)
(
hb
:
0
<
b
)
:
a
*
b
<
c
↔
a
<
c
/
b
source
theorem
sqrt_mul_lt_sqrt
{
a
b
c
:
ℝ
}
(
ha
:
0
<
a
)
(
hb
:
0
<
b
)
:
√
a
*
b
<
√
c
↔
a
*
b
^
2
<
c
source
theorem
sqrt_lt_sqrt_mul
{
a
b
c
:
ℝ
}
(
ha
:
0
<
a
)
(
hb
:
0
<
b
)
(
hc
:
0
<
c
)
:
√
a
<
√
c
*
b
↔
a
<
c
*
b
^
2